
236

Learning Expertise from the Opposition•

Susan L. Epstein
Department of Computer Science

Hunter College and The Graduate School of The City University of New York
695 Park Avenue, New York, NY 10021

USA

Abstract
For very difficult games, like Go, it is increasingly
clear that the most competitive programs will be
those whose expertise is developed through learning
during competition. This paper explores how the
nature of the opposition during training affects the
quality of learned behavior in two-person, perfect
information board games. It considers different
kinds of competitive training, the impact of trainer
error, appropriate metrics for post-training
performance measurement, and the ways those
metrics can be applied. Variations in the playing
skill learned from many kinds of opposition are
described here for three different games. The results
argue for a broad variety of training experience with
play at many levels. This variety can either be
driven by inherent elements of chance in the game
or be introduced deliberately into the training. A
case is made for extensive, thoughtful training of
systems that learn, and for cautious reliance upon
them.

1. Introduction
Educators promulgate many philosophies about what makes
a good learning situation for humans, but it is difficult to
compare how the same individual learns the same skill in
more than one environment; prior learning experiences are to
some extent ineradicable. With a computer program,
however, it is possible to learn from the beginning as often
as one likes, to compare and contrast learning environments
in a variety of situations, and to test the resultant skill
extensively without permitting further learning. In
particular, with machines instead of people, one can ask how
the nature of the opposition determines what, and how
quickly, a game player learns.

The thesis of this paper is that the acquisition of absolute
expertise in a competitive domain demands a broad variety of
challenging experience as well as more thorough testing
than traditionally anticipated. The contribution of this paper
is its analysis of the impact of the training environment on

*This work was supported in part by NSF 9001936 and PSC-
CUNY 668287.

learning to play games. It includes the formulation of
appropriate performance metrics and recommendations for
training a program to play games.

2. Competitive Learning and Expertise
'Iraditional AI game playing programs, like Deep Thought
and HiTech, use fast, deep search to identify relevant future
positions and evaluate their strength [Anantharaman et al.,
1990; Berliner & Ebeling, 1989]. These programs rely on
special-purpose hardware, clever storage and retrieval tactics,
a few well-known search heuristics, and raw computing
power to search deeply and quickly. There is a growing
consensus in the AI game-playing community, however,
that a game like Go cannot be played as well as chess is
with such techniques, because Go's search space is so much
larger than that of chess, and because Go offers so many
more possibilities at each choice point.

As a result, there has been substantial recent interest in
programs that learn to play games. Samuel's Checker Player
was an early effort that learned an evaluation function based
on input features of the checkers board [Samuel, 1963,
1967]. TD-gammon learns to play backgammon with a
neural net that, after much practice, holds its own against a
world master (Tosauro, 1992]. Morph learns to play chess
with a pattern cache that is gradually improving against a
strong commercial chess program [Levinson and Snyder,
1991J. Hoyle learns to play many simpler two-person
perfect information board games extremely well against a
variety of experts [Epstein, 1992]. TD-gammon learns the
weights for its neural net, Morph learns patterns, and Hoyle
learns useful knowledge about each game, knowledge that is
probably correct and possibly applicable in a variety of
contexts.

Do game-learning programs learn to play perfectly, or
only as well as people? Against what kind of opposition do
they learn to play best? Does the nature of the opposition
affect their learning speed or long-term memory
requirements? How does learning differ when the
opposition's errors are due to lack of foresight, to lack of
knowledge, or to random decisions? This paper describes a
recent experiment with Hoyle to address these issues.
Because Hoyle learns a broad variety of games against any
specified opposition, it can be used to explore whether the
answers to these questions are game-dependent.

3. Experimental Design
Each trial for this experiment has Hoyle learn a game while
playing against another program, called a trainer, and then
tests Hoyle's post-learning playing skill against four kinds
of opposition.

3.1 The learning program
Hoyle is based upon FORR, a general architecture for a
learning and problem solving expert, one that postulates and
capitalizes upon regularities (Epstein, 1991). Hoyle's
domain is two-person, perfect information board games.
Given the definition of a new game, Hoyle begins as a rule-
abiding novice that plays against an external, presumably
expert, model. This model is only observed, never queried.
As Hoyle plays it gradually improves, often becoming
expert or even perfect at a game.

Each game Hoyle can play is an instantiation, a pre-
specified, input instance, of a game frame . The only specific
knowledge Hoyle has about a new game before playing is
the values associated with these slots. Some slots hold
constants: the name of the game, the markers assigned to
each participant, the initial state of the board before play,
whether the board is two-dimensional or three-dimensional,
how often to scroll the screen during play, which places on
the board are considered adjacent in games where pieces may
slide, which lines on the board are considered wins if the
game is won that way. Other slots hold the names of LISP
functions: they display the current game on the screen, read
and filter input moves, generate and effect legal moves,
detect the end of a contest and who has won, and transform
the board back and forth between a list and a visual
representation. These functions are very brief, typically a
total of less than 100 lines of code per game.

Hoyle's game-playing algorithm is a script that provides
pre-defined, uniform, procedural direction to the program.
The game-playing algorithm enables Hoyle to perform as if
it were experienced in game playing, without expertise at
any particular game. This script detects when it is the
program's tum to move, ensures that the participants
alternately make legal moves, and announces the end of each
contest, along with any winner. Given a valid game
definition and the game-playing algorithm, Hoyle simulates
a rule-abiding novice, one that makes legal, if not astute,
moves.

The game-playing algorithm also triggers Hoyle's
Leamer. The Leamer is a set of algorithms for the discovery
of useful knowledge, knowledge that is expected to be
relevant and may be correct. Based on its playing experience,
Hoyle computes and stores game-dependent useful
knowledge. The Leamer has a uniform, heuristic, game-
independent learning procedure for each item of useful
knowledge. If the Leamer were to retain everything Hoyle
experiences, useful knowledge for an interesting game could
quickly become unmanageably large. Therefore the learning
algorithms generalize and are highly selective about what
they retain. There are useful knowledge slots to record
average contest length, applicable two-dimensional
symmetries, good openings, moves that expert opposition
appears to have found valuable, relevant forks, important
contest histories, whether going first or second is an

advantage, and significant states, situations that will
inevitably be won or lost when both participants play
expertly.

The application of learned useful knowledge is the task of
Hoyle 's Advisors. An Advisor is a heuristic that makes
comments about legal moves when it is the program's turn
to make one. A comment is the Advisor's name, a move,
and a weight, an integer from O to 10, indicating an opinion
somewhere in the spectrum from strong aversion (0) to
enthusiastic support (10). Each Advisor constructs its
comments based upon the current state and the useful
knowledge for the current game. For example, Victory
compares useful knowledge with the current legal moves,
and recommends with a weight of 10 each legal move that
results in an immediate win.

Whenever it is Hoyle's tum to move, the game-playing
algorithm provides the Advisors with the current game state,
the legal moves, and any useful knowledge about the game
already acquired. (If Hoyle has had little or no experience at
this particular game, there may be no useful knowledge.)
From the Advisors' comments, a simple arithmetic
calculation selects a move that is forwarded to the game-
playing algorithm for execution.

3.2 The trainers
There are five kinds of trainers in this experiment: self,
random, perfect, fallible, and informed. The self trainer is the
learning program itself, which takes both sides in every
contest. The random trainer makes randomly-chosen legal
moves, has no knowledge, and treats every possibility as
equally likely. The perfect trainer plays as if it had
exhaustively searched the tree and minimaxed the result back
up to the current state to select its next move [Nilsson,
1980]. If there is more than one equally good move, the
perfect trainer will make a random choice from among them.
A perfect trainer for tic-tac-toe, for example, opens half the
time in the center and half the time in a randomly-chosen
comer. A perfect trainer is designed to provide a variety of
high-quality expert play without mistakes. The fallible
trainer is a variation on the perfect trainer, a variation that
periodically has the opportunity to make a mistake. The
fallible trainer with an error rate of e% makes the perfect
trainer's move 100 - e% of the time, and makes a
randomly-chosen, legal, not necessarily imperfect move e%
of the time. There is a spectrum of fallible trainers in this
experiment withe values in multiples of 10, from 10 to 90.
Although a 10% chance of error may seem high, in many
games the branch factor (number of legal alternative moves)
decreases as play progresses, so that the likelihood of an
error diminishes towards the end of a contest. For example,
if there are three legal moves left in a contest, only one of
which is correct, a random selection still has a 33% chance
of making the right one. Thus there is only a .1(.67) = .067
chance of making a mistake at that point even though
e = 10. The informed trainer applies an input, game-
dependent evaluation function in an alpha-beta search to a
fixed depth [Nilsson, 1980]. With a depth of d, the informed
trainer uses the evaluation function to examine all the
relevant nodes d moves after the current state, and
minimaxes the result back up to the current state to select
its next move. When an informed trainer makes a mistake, it

237

238

. I

. I

is because the evaluation function is an approximation of
the knowledge inherent in the game tree, not because the
trainer has made a randomly chosen move. Informed training
is flawed by lack of foresight and lack o'f knowledge; fallible
training is flawed by random error. Each evaluation function
is absolutely correct at the end of a contest and reasonable
but imperfect elsewhere, as if the trainer had good but
incomplete understanding of the game. The informed trainers
in this experiment, each with its own trial, have d values
from 2 through 8.

3.3 The challengers
Post-learning playing skill is thoroughly tested against
varied opposition caiied challengers: a perfect challenger, an
expert challenger, a novice challenger, and a random
challenger. The four offer a broad variety of competitive
experience. Theperfectchallenger uses the same algorithm
as the perfect trainer. The expert challenger simulates an
expert equivalent to a fallible trainer with a 10% error rate;
90% of the time it plays flawlessly, 10% of the time it may
err. The novice challenger simulates an expert equivalent to
a fallible trainer with a 70% error rate; only 30% of the time
is it guaranteed to play perfectly. Error rates for both the
expert and the novice were selected from laboratory
observation of their resultant play quality. Finally, the
random challenger makes random legal moves.

••••
0000

Figure 1. The initial state for achi.

3.4 The games
The three games in this experiment are tic-tac-toe, lose tic-
tac-toe, and an African game called achi. Tic-tac-toe is played
on a three-by-three grid. One participant has five X's, and
the other has four O's. Initially the board is empty, and X
moves first. A tum is placing one of your markers in any
empty square. The first one to place three of the same
markers in a row, vertically, horizontally, or diagonally,
wins. There are eight such winning lines; play ends in a
draw when there are no more empty squares. Lose tic-tac-toe
is played the same way as tic-tac-toe, except that the first
one to place three of the same markers in a row, vertically,
horizontally, or diagonally, loses. Aclzi is played on the
board in Figure 1. The first participant has four black
markers; the second has four white ones. Initially the board
is empty, black moves first, and a tum is placing one of
your markers on the intersection of two or more lines; there
are nine such positions. Once all four of your markers are on
the board, a tum is moving one of your markers to the
single empty position. The first one to place three of the

same markers in a row, vertically, horizontally, or
diagonally, wins. There are eight such winning lines. Play
ends in a draw when it cycles through the same state for the
fourth time.

The construction of a perfect trainer and fallible trainers
requires a complete and correct perfect play theory for a
game, a real-time algorithm that identifies the best possible
move from every possible game state. The construction of a
thoughtful but partially flawed evaluation function requires
good human understanding of the features of a game. The
games for which people have both a perfect play theory and
such understanding are fairly simple. One way to make the
learning task more difficult is to select games where the
perfect play theory known to humans is noi naturally
expressible in the learning program 's representation. Lose
tic-tac-toe was chosen because Hoyle cannot represent its
perfect play theory explicitly, although it can eventually
acquire enough useful knowledge to play it perfectly. Lose
tic-tac-toe was also selected because a randomly chosen
move is likely to be a fatal error, and because the object is
to avoid achieving a pattern, unlike the other two games.
Achi was chosen because of the contrasts it offers to the
other two: it has two stages with different move types, it is
cyclic, and its branch factor remains four throughout the
second stage of every contest. All these games have certain
commonalities that make comparison appropriate: their
boards are isomorphic and each is known to be a draw game
(when played by perfect participants a contest always ends in
a draw).

3. 5 The learning and testing cycle
A trial in this experiment consists of a learning experience
followed by a testing experience. At the beginning of a trial,
Hoyle has no specific knowledge about any of the games. A
learningexperience is determined by the choice of a game
and a trainer. Since there are three possible games and, with
the values fore and d, 19 trainers, there are 57 trials . Once
the game and the trainer for a trial are specified, Hoyle plays
a tournament of contests at the specified game with its
designated trainer. After the program is judged to have
learned to play, learning is turned off, and Hoyle's skill is
evaluated in a testing experience, a 20-contest tournament
against each of the challengers. In both training and testing
tournaments, Hoyle and its opposition alternate playing
first.

This design makes several assumptions. The learner is not
required to discover any role advantage inherent in the tree;
the program is told that these are draw games. The program
is instructed to stop learning when it meets a behavioral
standard, i.e., when it draws or wins 10 consecutive
contests; it evaluates its playing performance based on this
externally specified standard. Finally, the program is
expected to perform well against any competition. It should
be able to exploit its opposition 's errors and to deal well
with foolish moves.

Every learning experience is non-deterministic because the
trainer or Hoyle can make random legal move choices from
time to time. A single run for a trial may therefore not be
representative of the trainer's impact on learning
performance. To compensate for this uncertainty, each trial
is run five times, and the results averaged.

3. 6 The evaluation criteria
Measuring whether or not a program plays perfectly requires
either exhaustive testing (the play of all possible contests)
or a perfect play theory for the game. For most interesting
games neither of these is an option. An alternative standard
is to require that the program achieve the best possible
outcome (win, loss, or draw) the game tree offers, from any
game state, against any opposition. Evaluation of learning
based on contest outcome seeks effective play, rather than
perfect play. It still demands, however, that the participant
take full advantage of the opposition's mistakes, and
identification of those mistakes is, once again, difficult to
measure.

A more workable standard is role perfonnance. In a draw
game, role performance requires a draw whether one moves
first or second in the contest, even against a perfect player.
Since losses in a draw game are always avoidable, a loss by
the learner indicates imperfect performance. A win by the
learner in a draw game, however, only indicates · the
successful exploitation of a fatal error made by the
opposition. This experiment uses role performance as the
learning criterion: for a draw game and a challenger,
reliability (the ability to withstand the competition) is
measured by the percentage of wins and draws, and power
(the ability to exploit the opposition's errors) is measured
by the percentage of wins. A perfect player would be 100%
reliable against all challengers and maximize its power as
circumstances permitted. In a draw game, power against the
expert challenger is always 0%.

To compare training behaviors across trainer type, con-
struct a similarity metric for post-learning playing behaviors
as follows. Let a trial of the experiment be represented as

= I b ij I, a 4x3 matrix where bij is the average of the
J.th outcome (number of wins, losses, or draws) against the
1th challenger (perfect, expert, novice, or random). Define
the challenger difference measure of two trials B and B' for
the ith challenger to be the sum of the squares of the corre-
sponding differences in their relevant rows

3 I (bij - b' ij) 2

j = 1
and define the difference of two testing behaviors as the sum

of their four challenger differences,

;t, (t, (~;- 17;;)2}
Identical testing behaviors have a zero difference in each row
and a zero difference overall. The testing behavior among
{Bl, B2, .. . , Bk} most similar to behavior B is the one
whose difference from B is a minimum .
. Finally, a le~rning program with an imperfect trainer may

fmd that leammg takes longer, or that it is burdened by
many unimportant recollections. For each trial learning time
is measured by the number of contests to meet the
behavioral standard, in this experiment a minimum of 10.
Learning space is measured by the additional memory
allocated to Hoyle's associated useful knowledge cache, a
heuristically restricted set of game states, moves, and contest
histories recorded from playing experience.

4. Results and Discussion
The results of the 57 trials are summarized here. An
important idea is that learning during training is often
incomplete, that is, that a program can meet the behavioral
standard (appear to have learned to draw consistently)
without knowing how to play perfectly, or even very well.
For example, after drawing 10 consecutive contests of lose
tic-tac-toe against a perfect trainer, Hoyle then lost 12% of
its contests against the expert challenger. This indicates that
leamin~ was incomplete, i.e., that training against a perfect
pla~er madequately prepared the program for competition
against a strong player that makes occasional mistakes. In
t~e dis.cussion that follows, Cox and Stuart's non-parametric
bmomial test for trend is used to calculate whether or not
there is a correlation between two sequences of numbers
[Conover, 1980]. All correlations cited are 93.75% or better
unless otherwise indicated. When one of the sequences is e
values, data from the perfect trainer (e = 0) and the random
trainer (e = 100) are also included.

4 .1 Individual games

4.1.1 Tic-tac-toe
~oyle's Advisors are immediately able to support a fairly
h1~h level of play at tic-tac-toe. Against any informed
tramer, for example, they never lose a contest. There is,
however, a game state involving a simple fork from a comer
?pening, where Hoyle, before learning, will always make an
mcorrect move and lose the contest. The perfect trainer
periodically presents this game state; Hoyle fails, learns
from its loss, and never makes a mistake in that state again.
During training, however, there is no guarantee when or if
th~t state will arise, particularly with a less than perfect
tramer. Hoyle can learn many other things from less high-
quality mistakes during training, but this particular piece of
useful knowledge is essential for perfect reliability.

Only when e = 10 was perfect reliability at tic-tac-toe
achieved consistently, i.e., against all the challengers in
every run. In every other trial, even in perfect training,
Hoyle lost a contest to some challenger in at least one run.
These losses ranged from 2% to 5.5% in trials where some
other run achieved perfect reliability. This suggests that at
best e = 10 can be trusted to develop reliability. Reliability
against the perfect challenger, the expert challenger, and the
?ovice challenger were negatively correlated with e value,
1.e., the more fallible the tic-tac-toe trainer, the less reliably
Hoyle perfonned

Hoyle 's power in tic-tac-toe ranged from 12% to 23%
against the expert, from 72% to 85% against the novice, and
85~ to 98% against the random challenger. Maximal power
a~a1nst the rand~m challenger was developed from training .
withe= 60, against the novice with d = 6, and against the
expert with random training.

Leaming time averaged roughly 12 contests fore s 70 and
for perfect training; in all the other trials it was an
overconfident 10. Learning time was negatively correlated
with e value; the more fallible the trainer, the faster the
behavioral standard was met. Learning space ranged from 1
unit, for self training and all informed training, to 24.6 for e
= 70. Leaming space was positively correlated with e value;

2 3 9

240

·1
I

the more fallible the trainer the more, presumably useful,
knowledge was acquired. The self-trained program lost 30%
of its contests to the perfect challenger and 2% to the novice
challenger, but also managed to win 14% against the expert,
72% against the novice, and 93% against the random
challenger.

4.1.2 Lose tic-tac-toe
Lose tic-tac-toe is a game where relatively few moves are
optimal, and even a single suboptimal move usually costs
one the contest [Cohen, 1972]. For X there is typically
exactly one correct move, including the single correct
opening. As a result, the perfect play algorithm must be
quite rigid and offers little opportunity to acquire po,ver
during training.

Only after perfect training was Hoyle always perfectly
reliable, and then only against the perfect challenger. After
perfect training Hoyle still lost 12% of its contests to the
expert, 18% to the novice, and 19% to the random
challenger. Clearly, learning had been incomplete.
(Inspection revealed that during training Hoyle usually met
the behavioral standard by the endgame skill it had acquired.)
For any other training, reliability was dramatically worse;
losses to the perfect challenger averaged from 40% to 61 %,
to the expert from 4% to 46%, to the novice from 14% to
29%, and to the random challenger from 7% to 23%. The
program sporadically achieved perfect reliability against the
perfect or the expert challenger on a single run for several
low e values, but still went on to lose at least four testing
contests against the other challengers in the same run. The
most consistently reliable performance against the expert
was achieved bye = 20, against the novice by e = 20 and d =
2, and against the random challenger by d = 5. Reliability
against the perfect, expert, and novice challengers decreased
with the error rate, i.e., the trainer's lack of skill appears to
have misguided the learner. Reliability against the random
challenger, however, increased with the error rate.

Hoyle's power at lose tic-tac-toe ranged from 14% to 41 %
against the expert, from 54% to 72% against the novice, and
from 60% to 80% against the random challenger. Maximal
power against the random challenger was developed from
training with d = 5, against the novice with e = 80, and
against the expert in three trials, with e = 80, with random
training, and with d = 4. Power against the expert challenger
and against the random challenger increases with the error
rate of the trainer. Presumably the lack of errors during
training made the program less able to maneuver in the
search space when the testers erred.

Learning time ranged from 10 contests, during two runs
for e = 80, to 156 for a run when e = 70. Learning space
ranged from 56.8 units ford= 7 to 340.8 ford= 3. Leaming
space increased with learning time for fallible training. The
self-trained program lost 61 % of its contests to the perfect
challenger, 46% to the expert, 23% to the novice, and 22%
to the random challenger, but also managed to win 14%
against the expert, 66% against the novice, and 69% against
the random challenger.

4.1.3 Achi
Achi is a game where most serious errors occur early, in the
stage when markers are first placed on the board. Contests

average 68 moves, offering ample opportunity for careless
error while play cycles to a draw.

When e = 20, 30, 80, 90 and when d = 2, 4, 5, 6, 8
perfect reliability was achieved consistently, i.e., against all
the challengers in every run. For other training, losses were
rare (about .03%) and never to the expert challenger. Hoyle's
power in achi ranged from 58% to 77% against the expert,
from 97% to 100% against the novice, and 99% to 100%
against the random challenger. Maximal power against the
expert was achieved withe = 20.

Leaming time ranged from 10 to 13 contests, but was
greater than 10 in only 3 runs. Leaming space ranged from 1
unit, for self training, all informed training, and perfect
training, to 52.4 for e = 90. Leaming space is positively
correlated with learning time for fallible training. Inspection
of the useful knowledge cache revealed that, against a fallible
trainer, the program always learns some accurate and quite
sophisticated achi strategy that it does not acquire during
perfect training. The resultant increase in its learning space
from fallible training does not, however, improve the
program's reliability or make a statistically significant
change in its power. Although the knowledge was correct
and clever, it had no visible impact on the evaluation criteria
posited here, i.e., the fallible achi trainer induced learning
that was a waste of resources. The self-trained program loses
1 % of its contests to the random challenger, but also
manages to win 72% against the expert, 100% against the
novice, and 99% against the random challenger.

4. 2 The impact of trainer error
Although it is possible to train a program to be at least
fairly reliable for each of the three games, imperfect training
offers better preparation for the occasional opportunities that
arise across a broad range of competition. In lose tic-tac-toe,
the most difficult of the three games for Hoyle to learn, the
e value is correlated with the number of wins against the
expert challenger; the more fallible the trainer, the more
powerful the program. Wizen learning is incomplete,
Hoyle's best preparation for imperfect play is a fallible
trainer. After perfect training the program was 100% reliable
against the perfect challenger, but only 88% against the
expert challenger, 82% against the novice challenger, and
81 % against the random challenger.

When self training is compared to the entire range of e
values for fallible training under the similarity metric of
Section 3, there is a dramatic and distinctive similarity
between self testing and e = 60% for tic-tac-toe, e = 50% and
80% for achi (where the difference from self training is
almost 0), and e = 70% for lose tic-tac-toe, i.e., self training
is like learning against a fallible player many of whose
moves may be errors. At tic-tac-toe, self training produced
the lowest power against the novice and near the lowest
against the expert; it was also only 70% reliable against the
perfect challenger. At lose tic-tac-toe, self training produced
the lowest power against the expert and the lowest or near
the lowest reliability against every challenger. Only at achi,
the game where useful knowledge had the least impact, was
self training moderately reliable and powerful.

The difference between learned behavior after informed
trainer error and after random trainer error appears strongly
related to both the nature of the evaluation function and the

game. For tic-tac-toe and achi, informed training relied upon
the number of potential winning and losing lines (up to 8)
on the board. This greedy approach always opens in the
center, regardless of depth. As a result, no informed training

· offers Hoyle the opportunity to learn the simple fork from a
comer opening that made the learner so reliable after perfect
training at tic-tac-toe. Hoyle learns a minimum during
informed training at any depth in these two games, so its
resultant testing behavior is simply the luck of the draw
against its challengers.

For lose tic-tac-toe, however, unless the trainer makes a
lot of mistakes, a program that meets the behavioral standard
is going to have to learn to open in the center. This is a
move most people, and therefore the evaluation function we
used, find highly counterintuitive. An informed trainer,
regardless of depth, will never open in the center: either it
will not search deeply enough or it will exercise its left-to-
right bias. For Hoyle to learn the correct opening against an
informed trainer, it must observe both a comer and a side
opening, and then prove that those openings, rather than any
later move, were responsible for the subsequent losses. Even
then, the program must learn how to play after the correct
qpening. Against a fallible trainer, there will be more
opportunity for this to happen; against an informed trainer
only half the contests (where Hoyle goes first) even offer the
opportunity to learn to play X perfectly. As a result,
informed training in lose tic-tac-toe is often slower than
fallible training, and the resultant quality of play can be
weaker.

5. Related Work
This research differs from prior work by educators and
psychologists because it is able to start each learning
experience with a machine that offers a tabula rasa, a clean
slate. Because people cannot clear their minds of all prior
experience, and because they may learn differently, the
results may not be analogous to people. Hoyle's learning
speed and output results, however, do simulate an
experienced game player encountering an unfamiliar game
[Epstein, 1992].

Neurogammon, an earlier version of TD-gammon, was a
neural net program that learned to play backgammon
[Tesauro and Sejnowski, 1989]. The program was trained to
select the moves made in 400 contests where Tosauro, a
strong but not world-class player, had played both sides. At
the First Computer Olympiad in London in 1989,
Neurogammon was clearly the strongest non-human
competitor. When Neurogammon plays TD-gammon,
however, it only wins 40% of the time. There are several
obvious explanations for TD-gammon's improved strength.
First, TD-gammon had much more extensive training; it
learned on approximately 200,000 contests. Second, TD-
gammon uses the TD(A.) algorithm instead of
Neurogammon's standard back-propagation [Sutton, 1988;
Rumelhart etal., 1986]. Finally, TD-gammon trains against
itself, probably with a more varied set of experiences.

An alternative kind of training attempts to prime the
learner, to provide it with a head start by first observing two
perfect players in competition before making any moves
itself. Experiments with a simple pattern-learner and

reinforcement training for several games on a three-by-three
grid have indicated that priming slows learning [Painter,
1992]. One possible explanation for this is that the initial
bias so developed is irrelevant, or even wrong, for many of
the game states that the novice learning program soon faces.
The head start must thus be partially unlearned before useful
learning can take place. Painter also found that a random
trainer produced a less reliable player. N-N{free, a hybrid
learning program with a neural net, was also found to suffer
from priming [Flax et al., 1990]. N-N{free also learned to
play far better against a fallib le player with e = 5 than
against a perfect player.

6. Conclusions
The role of the trainer in a competitive machine learning
experience has usually been a matter of convenience. Input
book games require the tedious assembly of databases.
Human opposition of any caliber plays too slowly, tires too
quickly, and may be fairly rigid in approach. That leaves
only opposition from another machine.

One way to see training for a competitive domain is as a
set of paths through a game tree. If the trainer always plays
perfectly, the learner will have no experience with large
portions of the problem space. After such an overly narrow
learning experience, there is no reason to believe that a
program will have the skill to deal with errors, or even with
suboptimal moves, let alone exploit them to its advantage.
The data presented here confirm this, particularly in a game
where relatively few moves are good choices. (Go is reputed
to be such a game.) A competitive learning experience
against a perfect player is flawed, and the resultant
performance is disappointing. No single trainer, in any of
the games, achieved maximum power against all the
challengers. Training against weak opposition is inadequate
preparation for a stronger opponent, but training against
strong opposition also turns out to be less adequate for a
weaker opponent when learning is incomplete.

A somewhat less than perfect training experience
introduces some variety into the paths through the game
tree. Whether this variety is engendered by random noise or
by lack of foresight and knowledge was not significant in
the three games considered here. This experiment sugges ts
that a trainer informed by an evaluation function but
hampered by lack of exhaustive search not only has the
narrowness of the perfect trainer, but is also no more
valuable as its depth increases. One might expect, however,
that in a game with a larger branching factor the probability
of making a suboptimal choice, rather than a terrible one,
would decrease, so that lack of foresight and knowledge in a
trainer would be less damaging to learning than random
noise would be. The potential tradeoff between partial
knowledge and the ways it might lead the learner astray
seems worth some additional explo ration.

It is possible that the results described here are a function
of the learning program, i.e., Hoyle, rather than of the
trainer. For example, one facet of Hoyle is its ability (but
by no means proclivity) to imitate expertise it has observed
in the opposition. TD-gammon, NIN-Tree, and Morph all
imitate the opposition too, but with different learning
methods from Hoyle 's . A program that ignored the behavior

241

242

··.1

• I

· I

of the opposition might be less susceptible to the influence
of its trainer, although one could argue that it was not
particularly intelligent either. Tesauro attributes TD-
gammon's ability to learn to play so well in part to the
variety of training situations that were forced upon it by the
non-determinism of the dice during learning; Gelfand found
e > 0 essential [Tesauro, 1991; Flax et al., 1990]. The
results described here, in conjunction with theirs, suggest
that the conclusion about the need for variety in training is a
function of the learning task, not of the particular learning
methods used here.

When learning time was relatively constant, learning
space was observed (87.5% correlation for achi, 93.75% for
tic-tac-toe) to increase with the fallibility of the trainer.
When learning time in fallible training varied widely (in lose
tic-tac-toe), learning space varied with it. In both cases, this
is because the heuristics pick up a good deal of data that
probably does not strengthen play, simply because the
program was exposed to so many mistakes. A neural net has
no such difficulty. It would be interesting to see whether
other methods also have larger long-term memory
requirements when training against weaker opposition.

Learning time was dependent on many factors. Hoyle
simulates an expert game player; it has general heuristics for
playing all games even before it learns about any specific
game. This makes its initial level of play higher than, say, a
neural net that randomized its initial weights. As a result,
Hoyle could meet the behavioral standard relatively quickly
in tic-tac-toe and achi. A fallible trainer often introduces
peculiar situations that the program would fail on, but learn
not to repeat, with a resultant increase in learning time. The
more fallible the trainer, the more often this can happen. On
the other hand, a fallible trainer also makes mistakes that the
program can exploit. The more fallible the trainer, the more
often this happens too, so that a highly fallible trainer may
allow the program to meet the behavioral standard too
quickly. All these factors visibly interacted, masking any
correlation.

Self training offers a natural, gradual progression from
weaker to stronger. It should therefore prepare the program
for any opposition as good as itself. Of course, using a
program as its own trainer deprives it of an important
knowledge source that people learn from, the expert model.
Self training is also a substantially slower way to acquire
broad expertise; TD-gammon spent the first 25% of its
training playing "long, looping contests that seemed to go
nowhere" [Tosauro, 1991].

One solution to the high estimated e values similar to self
training might be to raise the behavioral standard above 10
to lengthen the training time. In a game with a small search
space this should augment Hoyle's useful knowledge and
improve its performance, but there can be no guarantee of
perfection. This was demonstrated in single runs withe from
20 to 60 for lose tic-tac-toe, with the behavioral standard set
at 100 instead of 10. Leaming time with this higher
behavioral standard ranged from 297 to 505 contests, instead
of 10 to 156, and learning space from 336 units to 809,
instead of 56.8 to 340.8. In every run with the higher
behavioral standard, despite the fact that Hoyle had seen
much more of the search space, the program still lost from
1 % to 2% of its contests and showed no significant change

in power. It is important to note that those losses were
only to the novice or the random challenger. A higher
behavioral standard improved reliability but not power. A
higher behavioral standard also substantially increased
learning time and memory requirements. In 505 contests
averaging 9 states with markers on the board, Hoyle
encounters 4545 (not necessarily distinct) states out of 5478
possible distinct states in the entire search space. Even after
the opportunity to encounter as much as 83% of the entire
search space, Hoyle is not perfectly reliable. What is required
is not only more training but broader based training, i.e.,
novel experiences.

For games without an element of chance, variety in
training can be introduced with a broad spectrum of
opposition. As a result of this experiment, we recommend a
hybrid training experience for any program in a competitive
domain, one that interleaves sessions against a perfect trainer
with practice against itself. That is the method Hoyle now
uses in discovery mode, to develop its own expertise
without human guidance. When Hoyle trains this way, it
learns to be perfectly reliable and very powerful against all
the challengers.

For more difficult games where no perfect trainer is
possible, this research offers no reason to believe that self-
training can ever result in perfect play. For such games,
these results would advocate lesson-and-practice training:
alternating sets of a few contests against the best player
available (the lesson) and many contests against the learning
program itself (the practice). Whether or not a perfect player
is available, training should be periodically spiced with
particularly fallible opposition and a random move or two,
to keep a novice from taking the learner by surprise. Under
this regimen, once game-learning programs surpass people,
they can continue to train against each other. To the extent
that such programs develop different styles of play,
competition among them should strengthen their abilities.
In so imperfect an environment, however, there can be little
guarantee that they will ever play perfectly. A program can
meet a behavioral standard and still have much to learn.

Acknowledgments
The author thanks Jack Gelfand and Gerry Tesauro for
insightful discussions. Kouros Esfahany and Joanna Lesniak
provided expert-level data generation and programming
support.

References
[Anantharaman et al., 1990] T. Anantharaman, M. S.

Campbell, and F.-h. Hsu. Singular Extensions: Adding
Selectivity to Brute-Force Searching. Artificial
Intelligence 43 (1): 99-110, 1990.

[Berliner and Ebeling, 1989] H. Berliner and C. Ebeling.
Pattern Knowledge and Search: The SUPREM
Architecture.Artificiallntelligence 38 (2): 161-198, 1989.

[Cohen, 1972] D. I. A. Cohen. The Solution of a Simple
Game. Mathematics Magazine 45 (4): 213-216, 1972.

[Conover, 1980] W. J. Conover. PracticalNon-Parametric
Statistics, second edition. John Wiley and Sons, New
York, NY, 1980.

[Epstein, 1991] S. L. Epstein. Learning under a Weak
Theory, Tuchnical Report 91-01, Department of Computer
Science, Hunter College, 1991.

[Epstein, 1992] S. L. Epstein. Prior Knowledge Strengthens
Learning to Control Search in Weak Theory Domains.
International Journal of Intelligent Systems, to appear.

[Flax et al., 1990] M. G. Flax, J. J. Gelfand, S. H. Lane,
and D. A. Handelman. Integrating Neural Network and
Tree Search Approaches to Produce an Auto-Supervised
System that Learns to Play Games. In Proceedings of The
Aerospace Applications of Artificial Intelligence
Conference, Dayton, OH, 1990.

[Levinson and Snyder, 1991] R. Levinson and R. Snyder.
Adaptive Pattern-Oriented Chess. In Proceedings of the
Eighth International Machine Learning Workshop, 85-89.
San Mateo, CA, August, 1991. Morgan Kaufmann.

[Nilsson, 1980] N. J. Nilsson. Principles of Artificial
Intelligence. Tioga Publishing, Palo Alto, CA, 1980.

[Painter, 1992] J. Painter. Pattern Recognition for Decision
Making in a Competitive Environment. Master's diss.,
Hunter College of the City University of New York, in
preparation.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton,
,. and R. J. Williams. Learning Internal Representation by
~. Error Propagation. In Parallel Distributed Processing,
. Vol. 1, ed. D. E. Rumelhart and J. McClelland. MIT

Press, Cambridge, MA, 1986.
[Samuel, 1963] A. L. Samuel. Some Studies in Machine

Learning Using the Game of Checkers. In Computers and
Thought, ed. E. A. Feigenbaum and J. Feldman. McGraw-
Hill, New York, NY, 1963.

[Samuel, 1967] A. L. Samuel. Some Studies in Machine
· Learning Using the Game of Checkers. II - Recent
:: Progress. IBM Journal of Research and Development ll
.. : (6): 601-617, 1967.
(Sutton, 1988] R. S. Sutton. Learning to Predict by the

Methods of Temporal Differences. Machine Learning 3 (9-
44, 1988.

[Tesauro and Sejnowski, 1989] G. Tesauro and T. J.
Sejnowski. A Parallel Network that Learns to Play
Backgammon. Artificial Intelligence 39 (3): 357 - 390,
1989.

[Tusauro, 1991] G. Tusauro. Personal communication.
[Tesauro, 1992] G. Tusauro. Practical Issues in Temporal

Difference Leaming.Machine Learning, to appear.

243

