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Abstract 
For very difficult games, like Go, it is increasingly 
clear that the most competitive programs will be 
those whose expertise is developed through learning 
during competition. This paper explores how the 
nature of the opposition during training affects the 
quality of learned behavior in two-person, perfect 
information board games. It considers different 
kinds of competitive training, the impact of trainer 
error, appropriate metrics for post-training 
performance measurement, and the ways those 
metrics can be applied. Variations in the playing 
skill learned from many kinds of opposition are 
described here for three different games. The results 
argue for a broad variety of training experience with 
play at many levels. This variety can either be 
driven by inherent elements of chance in the game 
or be introduced deliberately into the training. A 
case is made for extensive, thoughtful training of 
systems that learn, and for cautious reliance upon 
them. 

1. Introduction 
Educators promulgate many philosophies about what makes 
a good learning situation for humans, but it is difficult to 
compare how the same individual learns the same skill in 
more than one environment; prior learning experiences are to 
some extent ineradicable. With a computer program, 
however, it is possible to learn from the beginning as often 
as one likes, to compare and contrast learning environments 
in a variety of situations, and to test the resultant skill 
extensively without permitting further learning. In 
particular, with machines instead of people, one can ask how 
the nature of the opposition determines what, and how 
quickly, a game player learns. 

The thesis of this paper is that the acquisition of absolute 
expertise in a competitive domain demands a broad variety of 
challenging experience as well as more thorough testing 
than traditionally anticipated. The contribution of this paper 
is its analysis of the impact of the training environment on 
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learning to play games. It includes the formulation of 
appropriate performance metrics and recommendations for 
training a program to play games. 

2. Competitive Learning and Expertise 
'Iraditional AI game playing programs, like Deep Thought 
and HiTech, use fast, deep search to identify relevant future 
positions and evaluate their strength [Anantharaman et al., 
1990; Berliner & Ebeling, 1989]. These programs rely on 
special-purpose hardware, clever storage and retrieval tactics, 
a few well-known search heuristics, and raw computing 
power to search deeply and quickly. There is a growing 
consensus in the AI game-playing community, however, 
that a game like Go cannot be played as well as chess is 
with such techniques, because Go's search space is so much 
larger than that of chess, and because Go offers so many 
more possibilities at each choice point. 

As a result, there has been substantial recent interest in 
programs that learn to play games. Samuel's Checker Player 
was an early effort that learned an evaluation function based 
on input features of the checkers board [Samuel, 1963, 
1967]. TD-gammon learns to play backgammon with a 
neural net that, after much practice, holds its own against a 
world master (Tosauro, 1992]. Morph learns to play chess 
with a pattern cache that is gradually improving against a 
strong commercial chess program [Levinson and Snyder, 
1991J. Hoyle learns to play many simpler two-person 
perfect information board games extremely well against a 
variety of experts [Epstein, 1992]. TD-gammon learns the 
weights for its neural net, Morph learns patterns, and Hoyle 
learns useful knowledge about each game, knowledge that is 
probably correct and possibly applicable in a variety of 
contexts. 

Do game-learning programs learn to play perfectly, or 
only as well as people? Against what kind of opposition do 
they learn to play best? Does the nature of the opposition 
affect their learning speed or long-term memory 
requirements? How does learning differ when the 
opposition's errors are due to lack of foresight, to lack of 
knowledge, or to random decisions? This paper describes a 
recent experiment with Hoyle to address these issues. 
Because Hoyle learns a broad variety of games against any 
specified opposition, it can be used to explore whether the 
answers to these questions are game-dependent. 



3. Experimental Design 
Each trial for this experiment has Hoyle learn a game while 
playing against another program, called a trainer, and then 
tests Hoyle's post-learning playing skill against four kinds 
of opposition. 

3.1 The learning program 
Hoyle is based upon FORR, a general architecture for a 
learning and problem solving expert, one that postulates and 
capitalizes upon regularities (Epstein, 1991). Hoyle's 
domain is two-person, perfect information board games. 
Given the definition of a new game, Hoyle begins as a rule-
abiding novice that plays against an external, presumably 
expert, model. This model is only observed, never queried. 
As Hoyle plays it gradually improves, often becoming 
expert or even perfect at a game. 

Each game Hoyle can play is an instantiation, a pre-
specified, input instance, of a game frame . The only specific 
knowledge Hoyle has about a new game before playing is 
the values associated with these slots. Some slots hold 
constants: the name of the game, the markers assigned to 
each participant, the initial state of the board before play, 
whether the board is two-dimensional or three-dimensional, 
how often to scroll the screen during play, which places on 
the board are considered adjacent in games where pieces may 
slide, which lines on the board are considered wins if the 
game is won that way. Other slots hold the names of LISP 
functions: they display the current game on the screen, read 
and filter input moves, generate and effect legal moves, 
detect the end of a contest and who has won, and transform 
the board back and forth between a list and a visual 
representation. These functions are very brief, typically a 
total of less than 100 lines of code per game. 

Hoyle's game-playing algorithm is a script that provides 
pre-defined, uniform, procedural direction to the program. 
The game-playing algorithm enables Hoyle to perform as if 
it were experienced in game playing, without expertise at 
any particular game. This script detects when it is the 
program's tum to move, ensures that the participants 
alternately make legal moves, and announces the end of each 
contest, along with any winner. Given a valid game 
definition and the game-playing algorithm, Hoyle simulates 
a rule-abiding novice, one that makes legal, if not astute, 
moves. 

The game-playing algorithm also triggers Hoyle's 
Leamer. The Leamer is a set of algorithms for the discovery 
of useful knowledge, knowledge that is expected to be 
relevant and may be correct. Based on its playing experience, 
Hoyle computes and stores game-dependent useful 
knowledge. The Leamer has a uniform, heuristic, game-
independent learning procedure for each item of useful 
knowledge. If the Leamer were to retain everything Hoyle 
experiences, useful knowledge for an interesting game could 
quickly become unmanageably large. Therefore the learning 
algorithms generalize and are highly selective about what 
they retain. There are useful knowledge slots to record 
average contest length, applicable two-dimensional 
symmetries, good openings, moves that expert opposition 
appears to have found valuable, relevant forks, important 
contest histories, whether going first or second is an 

advantage, and significant states, situations that will 
inevitably be won or lost when both participants play 
expertly. 

The application of learned useful knowledge is the task of 
Hoyle 's Advisors. An Advisor is a heuristic that makes 
comments about legal moves when it is the program's turn 
to make one. A comment is the Advisor's name, a move, 
and a weight, an integer from O to 10, indicating an opinion 
somewhere in the spectrum from strong aversion (0) to 
enthusiastic support (10). Each Advisor constructs its 
comments based upon the current state and the useful 
knowledge for the current game. For example, Victory 
compares useful knowledge with the current legal moves, 
and recommends with a weight of 10 each legal move that 
results in an immediate win. 

Whenever it is Hoyle's tum to move, the game-playing 
algorithm provides the Advisors with the current game state, 
the legal moves, and any useful knowledge about the game 
already acquired. (If Hoyle has had little or no experience at 
this particular game, there may be no useful knowledge.) 
From the Advisors' comments, a simple arithmetic 
calculation selects a move that is forwarded to the game-
playing algorithm for execution. 

3.2 The trainers 
There are five kinds of trainers in this experiment: self, 
random, perfect, fallible, and informed. The self trainer is the 
learning program itself, which takes both sides in every 
contest. The random trainer makes randomly-chosen legal 
moves, has no knowledge, and treats every possibility as 
equally likely. The perfect trainer plays as if it had 
exhaustively searched the tree and minimaxed the result back 
up to the current state to select its next move [Nilsson, 
1980]. If there is more than one equally good move, the 
perfect trainer will make a random choice from among them. 
A perfect trainer for tic-tac-toe, for example, opens half the 
time in the center and half the time in a randomly-chosen 
comer. A perfect trainer is designed to provide a variety of 
high-quality expert play without mistakes. The fallible 
trainer is a variation on the perfect trainer, a variation that 
periodically has the opportunity to make a mistake. The 
fallible trainer with an error rate of e% makes the perfect 
trainer's move 100 - e% of the time, and makes a 
randomly-chosen, legal, not necessarily imperfect move e% 
of the time. There is a spectrum of fallible trainers in this 
experiment withe values in multiples of 10, from 10 to 90. 
Although a 10% chance of error may seem high, in many 
games the branch factor (number of legal alternative moves) 
decreases as play progresses, so that the likelihood of an 
error diminishes towards the end of a contest. For example, 
if there are three legal moves left in a contest, only one of 
which is correct, a random selection still has a 33% chance 
of making the right one. Thus there is only a .1(.67) = .067 
chance of making a mistake at that point even though 
e = 10. The informed trainer applies an input, game-
dependent evaluation function in an alpha-beta search to a 
fixed depth [Nilsson, 1980]. With a depth of d, the informed 
trainer uses the evaluation function to examine all the 
relevant nodes d moves after the current state, and 
minimaxes the result back up to the current state to select 
its next move. When an informed trainer makes a mistake, it 
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is because the evaluation function is an approximation of 
the knowledge inherent in the game tree, not because the 
trainer has made a randomly chosen move. Informed training 
is flawed by lack of foresight and lack o'f knowledge; fallible 
training is flawed by random error. Each evaluation function 
is absolutely correct at the end of a contest and reasonable 
but imperfect elsewhere, as if the trainer had good but 
incomplete understanding of the game. The informed trainers 
in this experiment, each with its own trial, have d values 
from 2 through 8. 

3.3 The challengers 
Post-learning playing skill is thoroughly tested against 
varied opposition caiied challengers: a perfect challenger, an 
expert challenger, a novice challenger, and a random 
challenger. The four offer a broad variety of competitive 
experience. Theperfectchallenger uses the same algorithm 
as the perfect trainer. The expert challenger simulates an 
expert equivalent to a fallible trainer with a 10% error rate; 
90% of the time it plays flawlessly, 10% of the time it may 
err. The novice challenger simulates an expert equivalent to 
a fallible trainer with a 70% error rate; only 30% of the time 
is it guaranteed to play perfectly. Error rates for both the 
expert and the novice were selected from laboratory 
observation of their resultant play quality. Finally, the 
random challenger makes random legal moves. 

•••• 
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Figure 1. The initial state for achi. 

3.4 The games 
The three games in this experiment are tic-tac-toe, lose tic-
tac-toe, and an African game called achi. Tic-tac-toe is played 
on a three-by-three grid. One participant has five X's, and 
the other has four O's. Initially the board is empty, and X 
moves first. A tum is placing one of your markers in any 
empty square. The first one to place three of the same 
markers in a row, vertically, horizontally, or diagonally, 
wins. There are eight such winning lines; play ends in a 
draw when there are no more empty squares. Lose tic-tac-toe 
is played the same way as tic-tac-toe, except that the first 
one to place three of the same markers in a row, vertically, 
horizontally, or diagonally, loses. Aclzi is played on the 
board in Figure 1. The first participant has four black 
markers; the second has four white ones. Initially the board 
is empty, black moves first, and a tum is placing one of 
your markers on the intersection of two or more lines; there 
are nine such positions. Once all four of your markers are on 
the board, a tum is moving one of your markers to the 
single empty position. The first one to place three of the 

same markers in a row, vertically, horizontally, or 
diagonally, wins. There are eight such winning lines. Play 
ends in a draw when it cycles through the same state for the 
fourth time. 

The construction of a perfect trainer and fallible trainers 
requires a complete and correct perfect play theory for a 
game, a real-time algorithm that identifies the best possible 
move from every possible game state. The construction of a 
thoughtful but partially flawed evaluation function requires 
good human understanding of the features of a game. The 
games for which people have both a perfect play theory and 
such understanding are fairly simple. One way to make the 
learning task more difficult is to select games where the 
perfect play theory known to humans is noi naturally 
expressible in the learning program 's representation. Lose 
tic-tac-toe was chosen because Hoyle cannot represent its 
perfect play theory explicitly, although it can eventually 
acquire enough useful knowledge to play it perfectly. Lose 
tic-tac-toe was also selected because a randomly chosen 
move is likely to be a fatal error, and because the object is 
to avoid achieving a pattern, unlike the other two games. 
Achi was chosen because of the contrasts it offers to the 
other two: it has two stages with different move types, it is 
cyclic, and its branch factor remains four throughout the 
second stage of every contest. All these games have certain 
commonalities that make comparison appropriate: their 
boards are isomorphic and each is known to be a draw game 
(when played by perfect participants a contest always ends in 
a draw). 

3. 5 The learning and testing cycle 
A trial in this experiment consists of a learning experience 
followed by a testing experience. At the beginning of a trial, 
Hoyle has no specific knowledge about any of the games. A 
learningexperience is determined by the choice of a game 
and a trainer. Since there are three possible games and, with 
the values fore and d, 19 trainers, there are 57 trials . Once 
the game and the trainer for a trial are specified, Hoyle plays 
a tournament of contests at the specified game with its 
designated trainer. After the program is judged to have 
learned to play, learning is turned off, and Hoyle's skill is 
evaluated in a testing experience, a 20-contest tournament 
against each of the challengers. In both training and testing 
tournaments, Hoyle and its opposition alternate playing 
first. 

This design makes several assumptions. The learner is not 
required to discover any role advantage inherent in the tree; 
the program is told that these are draw games. The program 
is instructed to stop learning when it meets a behavioral 
standard, i.e., when it draws or wins 10 consecutive 
contests; it evaluates its playing performance based on this 
externally specified standard. Finally, the program is 
expected to perform well against any competition. It should 
be able to exploit its opposition 's errors and to deal well 
with foolish moves. 

Every learning experience is non-deterministic because the 
trainer or Hoyle can make random legal move choices from 
time to time. A single run for a trial may therefore not be 
representative of the trainer's impact on learning 
performance. To compensate for this uncertainty, each trial 
is run five times, and the results averaged. 



3. 6 The evaluation criteria 
Measuring whether or not a program plays perfectly requires 
either exhaustive testing (the play of all possible contests) 
or a perfect play theory for the game. For most interesting 
games neither of these is an option. An alternative standard 
is to require that the program achieve the best possible 
outcome (win, loss, or draw) the game tree offers, from any 
game state, against any opposition. Evaluation of learning 
based on contest outcome seeks effective play, rather than 
perfect play. It still demands, however, that the participant 
take full advantage of the opposition's mistakes, and 
identification of those mistakes is, once again, difficult to 
measure. 

A more workable standard is role perfonnance. In a draw 
game, role performance requires a draw whether one moves 
first or second in the contest, even against a perfect player. 
Since losses in a draw game are always avoidable, a loss by 
the learner indicates imperfect performance. A win by the 
learner in a draw game, however, only indicates · the 
successful exploitation of a fatal error made by the 
opposition. This experiment uses role performance as the 
learning criterion: for a draw game and a challenger, 
reliability (the ability to withstand the competition) is 
measured by the percentage of wins and draws, and power 
(the ability to exploit the opposition's errors) is measured 
by the percentage of wins. A perfect player would be 100% 
reliable against all challengers and maximize its power as 
circumstances permitted. In a draw game, power against the 
expert challenger is always 0%. 

To compare training behaviors across trainer type, con-
struct a similarity metric for post-learning playing behaviors 
as follows. Let a trial of the experiment be represented as 

= I b ij I, a 4x3 matrix where bij is the average of the 
J.th outcome (number of wins, losses, or draws) against the 
1th challenger (perfect, expert, novice, or random). Define 
the challenger difference measure of two trials B and B' for 
the ith challenger to be the sum of the squares of the corre-
sponding differences in their relevant rows 

3 I (bij - b' ij) 2 

j = 1 
and define the difference of two testing behaviors as the sum 

of their four challenger differences, 

;t, (t, (~;- 17;;)2} 
Identical testing behaviors have a zero difference in each row 
and a zero difference overall. The testing behavior among 
{Bl, B2, .. . , Bk} most similar to behavior B is the one 
whose difference from B is a minimum . 
. Finally, a le~rning program with an imperfect trainer may 

fmd that leammg takes longer, or that it is burdened by 
many unimportant recollections. For each trial learning time 
is measured by the number of contests to meet the 
behavioral standard, in this experiment a minimum of 10. 
Learning space is measured by the additional memory 
allocated to Hoyle's associated useful knowledge cache, a 
heuristically restricted set of game states, moves, and contest 
histories recorded from playing experience. 

4. Results and Discussion 
The results of the 57 trials are summarized here. An 
important idea is that learning during training is often 
incomplete, that is, that a program can meet the behavioral 
standard (appear to have learned to draw consistently) 
without knowing how to play perfectly, or even very well. 
For example, after drawing 10 consecutive contests of lose 
tic-tac-toe against a perfect trainer, Hoyle then lost 12% of 
its contests against the expert challenger. This indicates that 
leamin~ was incomplete, i.e., that training against a perfect 
pla~er madequately prepared the program for competition 
against a strong player that makes occasional mistakes. In 
t~e dis.cussion that follows, Cox and Stuart's non-parametric 
bmomial test for trend is used to calculate whether or not 
there is a correlation between two sequences of numbers 
[Conover, 1980]. All correlations cited are 93.75% or better 
unless otherwise indicated. When one of the sequences is e 
values, data from the perfect trainer (e = 0) and the random 
trainer (e = 100) are also included. 

4 .1 Individual games 

4.1.1 Tic-tac-toe 
~oyle's Advisors are immediately able to support a fairly 
h1~h level of play at tic-tac-toe. Against any informed 
tramer, for example, they never lose a contest. There is, 
however, a game state involving a simple fork from a comer 
?pening, where Hoyle, before learning, will always make an 
mcorrect move and lose the contest. The perfect trainer 
periodically presents this game state; Hoyle fails, learns 
from its loss, and never makes a mistake in that state again. 
During training, however, there is no guarantee when or if 
th~t state will arise, particularly with a less than perfect 
tramer. Hoyle can learn many other things from less high-
quality mistakes during training, but this particular piece of 
useful knowledge is essential for perfect reliability. 

Only when e = 10 was perfect reliability at tic-tac-toe 
achieved consistently, i.e., against all the challengers in 
every run. In every other trial, even in perfect training, 
Hoyle lost a contest to some challenger in at least one run. 
These losses ranged from 2% to 5.5% in trials where some 
other run achieved perfect reliability. This suggests that at 
best e = 10 can be trusted to develop reliability. Reliability 
against the perfect challenger, the expert challenger, and the 
?ovice challenger were negatively correlated with e value, 
1.e., the more fallible the tic-tac-toe trainer, the less reliably 
Hoyle perfonned 

Hoyle 's power in tic-tac-toe ranged from 12% to 23% 
against the expert, from 72% to 85% against the novice, and 
85~ to 98% against the random challenger. Maximal power 
a~a1nst the rand~m challenger was developed from training . 
withe= 60, against the novice with d = 6, and against the 
expert with random training. 

Leaming time averaged roughly 12 contests fore s 70 and 
for perfect training; in all the other trials it was an 
overconfident 10. Learning time was negatively correlated 
with e value; the more fallible the trainer, the faster the 
behavioral standard was met. Learning space ranged from 1 
unit, for self training and all informed training, to 24.6 for e 
= 70. Leaming space was positively correlated with e value; 
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the more fallible the trainer the more, presumably useful, 
knowledge was acquired. The self-trained program lost 30% 
of its contests to the perfect challenger and 2% to the novice 
challenger, but also managed to win 14% against the expert, 
72% against the novice, and 93% against the random 
challenger. 

4.1.2 Lose tic-tac-toe 
Lose tic-tac-toe is a game where relatively few moves are 
optimal, and even a single suboptimal move usually costs 
one the contest [Cohen, 1972]. For X there is typically 
exactly one correct move, including the single correct 
opening. As a result, the perfect play algorithm must be 
quite rigid and offers little opportunity to acquire po,ver 
during training. 

Only after perfect training was Hoyle always perfectly 
reliable, and then only against the perfect challenger. After 
perfect training Hoyle still lost 12% of its contests to the 
expert, 18% to the novice, and 19% to the random 
challenger. Clearly, learning had been incomplete. 
(Inspection revealed that during training Hoyle usually met 
the behavioral standard by the endgame skill it had acquired.) 
For any other training, reliability was dramatically worse; 
losses to the perfect challenger averaged from 40% to 61 %, 
to the expert from 4% to 46%, to the novice from 14% to 
29%, and to the random challenger from 7% to 23%. The 
program sporadically achieved perfect reliability against the 
perfect or the expert challenger on a single run for several 
low e values, but still went on to lose at least four testing 
contests against the other challengers in the same run. The 
most consistently reliable performance against the expert 
was achieved bye = 20, against the novice by e = 20 and d = 
2, and against the random challenger by d = 5. Reliability 
against the perfect, expert, and novice challengers decreased 
with the error rate, i.e., the trainer's lack of skill appears to 
have misguided the learner. Reliability against the random 
challenger, however, increased with the error rate. 

Hoyle's power at lose tic-tac-toe ranged from 14% to 41 % 
against the expert, from 54% to 72% against the novice, and 
from 60% to 80% against the random challenger. Maximal 
power against the random challenger was developed from 
training with d = 5, against the novice with e = 80, and 
against the expert in three trials, with e = 80, with random 
training, and with d = 4. Power against the expert challenger 
and against the random challenger increases with the error 
rate of the trainer. Presumably the lack of errors during 
training made the program less able to maneuver in the 
search space when the testers erred. 

Learning time ranged from 10 contests, during two runs 
for e = 80, to 156 for a run when e = 70. Learning space 
ranged from 56.8 units ford= 7 to 340.8 ford= 3. Leaming 
space increased with learning time for fallible training. The 
self-trained program lost 61 % of its contests to the perfect 
challenger, 46% to the expert, 23% to the novice, and 22% 
to the random challenger, but also managed to win 14% 
against the expert, 66% against the novice, and 69% against 
the random challenger. 

4.1.3 Achi 
Achi is a game where most serious errors occur early, in the 
stage when markers are first placed on the board. Contests 

average 68 moves, offering ample opportunity for careless 
error while play cycles to a draw. 

When e = 20, 30, 80, 90 and when d = 2, 4, 5, 6, 8 
perfect reliability was achieved consistently, i.e., against all 
the challengers in every run. For other training, losses were 
rare (about .03%) and never to the expert challenger. Hoyle's 
power in achi ranged from 58% to 77% against the expert, 
from 97% to 100% against the novice, and 99% to 100% 
against the random challenger. Maximal power against the 
expert was achieved withe = 20. 

Leaming time ranged from 10 to 13 contests, but was 
greater than 10 in only 3 runs. Leaming space ranged from 1 
unit, for self training, all informed training, and perfect 
training, to 52.4 for e = 90. Leaming space is positively 
correlated with learning time for fallible training. Inspection 
of the useful knowledge cache revealed that, against a fallible 
trainer, the program always learns some accurate and quite 
sophisticated achi strategy that it does not acquire during 
perfect training. The resultant increase in its learning space 
from fallible training does not, however, improve the 
program's reliability or make a statistically significant 
change in its power. Although the knowledge was correct 
and clever, it had no visible impact on the evaluation criteria 
posited here, i.e., the fallible achi trainer induced learning 
that was a waste of resources. The self-trained program loses 
1 % of its contests to the random challenger, but also 
manages to win 72% against the expert, 100% against the 
novice, and 99% against the random challenger. 

4. 2 The impact of trainer error 
Although it is possible to train a program to be at least 
fairly reliable for each of the three games, imperfect training 
offers better preparation for the occasional opportunities that 
arise across a broad range of competition. In lose tic-tac-toe, 
the most difficult of the three games for Hoyle to learn, the 
e value is correlated with the number of wins against the 
expert challenger; the more fallible the trainer, the more 
powerful the program. Wizen learning is incomplete, 
Hoyle's best preparation for imperfect play is a fallible 
trainer. After perfect training the program was 100% reliable 
against the perfect challenger, but only 88% against the 
expert challenger, 82% against the novice challenger, and 
81 % against the random challenger. 

When self training is compared to the entire range of e 
values for fallible training under the similarity metric of 
Section 3, there is a dramatic and distinctive similarity 
between self testing and e = 60% for tic-tac-toe, e = 50% and 
80% for achi (where the difference from self training is 
almost 0), and e = 70% for lose tic-tac-toe, i.e., self training 
is like learning against a fallible player many of whose 
moves may be errors. At tic-tac-toe, self training produced 
the lowest power against the novice and near the lowest 
against the expert; it was also only 70% reliable against the 
perfect challenger. At lose tic-tac-toe, self training produced 
the lowest power against the expert and the lowest or near 
the lowest reliability against every challenger. Only at achi, 
the game where useful knowledge had the least impact, was 
self training moderately reliable and powerful. 

The difference between learned behavior after informed 
trainer error and after random trainer error appears strongly 
related to both the nature of the evaluation function and the 



game. For tic-tac-toe and achi, informed training relied upon 
the number of potential winning and losing lines (up to 8) 
on the board. This greedy approach always opens in the 
center, regardless of depth. As a result, no informed training 

· offers Hoyle the opportunity to learn the simple fork from a 
comer opening that made the learner so reliable after perfect 
training at tic-tac-toe. Hoyle learns a minimum during 
informed training at any depth in these two games, so its 
resultant testing behavior is simply the luck of the draw 
against its challengers. 

For lose tic-tac-toe, however, unless the trainer makes a 
lot of mistakes, a program that meets the behavioral standard 
is going to have to learn to open in the center. This is a 
move most people, and therefore the evaluation function we 
used, find highly counterintuitive. An informed trainer, 
regardless of depth, will never open in the center: either it 
will not search deeply enough or it will exercise its left-to-
right bias. For Hoyle to learn the correct opening against an 
informed trainer, it must observe both a comer and a side 
opening, and then prove that those openings, rather than any 
later move, were responsible for the subsequent losses. Even 
then, the program must learn how to play after the correct 
qpening. Against a fallible trainer, there will be more 
opportunity for this to happen; against an informed trainer 
only half the contests (where Hoyle goes first) even offer the 
opportunity to learn to play X perfectly. As a result, 
informed training in lose tic-tac-toe is often slower than 
fallible training, and the resultant quality of play can be 
weaker. 

5. Related Work 
This research differs from prior work by educators and 
psychologists because it is able to start each learning 
experience with a machine that offers a tabula rasa, a clean 
slate. Because people cannot clear their minds of all prior 
experience, and because they may learn differently, the 
results may not be analogous to people. Hoyle's learning 
speed and output results, however, do simulate an 
experienced game player encountering an unfamiliar game 
[Epstein, 1992]. 

Neurogammon, an earlier version of TD-gammon, was a 
neural net program that learned to play backgammon 
[Tesauro and Sejnowski, 1989]. The program was trained to 
select the moves made in 400 contests where Tosauro, a 
strong but not world-class player, had played both sides. At 
the First Computer Olympiad in London in 1989, 
Neurogammon was clearly the strongest non-human 
competitor. When Neurogammon plays TD-gammon, 
however, it only wins 40% of the time. There are several 
obvious explanations for TD-gammon's improved strength. 
First, TD-gammon had much more extensive training; it 
learned on approximately 200,000 contests. Second, TD-
gammon uses the TD(A.) algorithm instead of 
Neurogammon's standard back-propagation [Sutton, 1988; 
Rumelhart etal., 1986]. Finally, TD-gammon trains against 
itself, probably with a more varied set of experiences. 

An alternative kind of training attempts to prime the 
learner, to provide it with a head start by first observing two 
perfect players in competition before making any moves 
itself. Experiments with a simple pattern-learner and 

reinforcement training for several games on a three-by-three 
grid have indicated that priming slows learning [Painter, 
1992]. One possible explanation for this is that the initial 
bias so developed is irrelevant, or even wrong, for many of 
the game states that the novice learning program soon faces. 
The head start must thus be partially unlearned before useful 
learning can take place. Painter also found that a random 
trainer produced a less reliable player. N-N{free, a hybrid 
learning program with a neural net, was also found to suffer 
from priming [Flax et al., 1990]. N-N{free also learned to 
play far better against a fallib le player with e = 5 than 
against a perfect player. 

6. Conclusions 
The role of the trainer in a competitive machine learning 
experience has usually been a matter of convenience. Input 
book games require the tedious assembly of databases. 
Human opposition of any caliber plays too slowly, tires too 
quickly, and may be fairly rigid in approach. That leaves 
only opposition from another machine. 

One way to see training for a competitive domain is as a 
set of paths through a game tree. If the trainer always plays 
perfectly, the learner will have no experience with large 
portions of the problem space. After such an overly narrow 
learning experience, there is no reason to believe that a 
program will have the skill to deal with errors, or even with 
suboptimal moves, let alone exploit them to its advantage. 
The data presented here confirm this, particularly in a game 
where relatively few moves are good choices. (Go is reputed 
to be such a game.) A competitive learning experience 
against a perfect player is flawed, and the resultant 
performance is disappointing. No single trainer, in any of 
the games, achieved maximum power against all the 
challengers. Training against weak opposition is inadequate 
preparation for a stronger opponent, but training against 
strong opposition also turns out to be less adequate for a 
weaker opponent when learning is incomplete. 

A somewhat less than perfect training experience 
introduces some variety into the paths through the game 
tree. Whether this variety is engendered by random noise or 
by lack of foresight and knowledge was not significant in 
the three games considered here. This experiment sugges ts 
that a trainer informed by an evaluation function but 
hampered by lack of exhaustive search not only has the 
narrowness of the perfect trainer, but is also no more 
valuable as its depth increases. One might expect, however, 
that in a game with a larger branching factor the probability 
of making a suboptimal choice, rather than a terrible one, 
would decrease, so that lack of foresight and knowledge in a 
trainer would be less damaging to learning than random 
noise would be. The potential tradeoff between partial 
knowledge and the ways it might lead the learner astray 
seems worth some additional explo ration. 

It is possible that the results described here are a function 
of the learning program, i.e., Hoyle, rather than of the 
trainer. For example, one facet of Hoyle is its ability (but 
by no means proclivity) to imitate expertise it has observed 
in the opposition. TD-gammon, NIN-Tree, and Morph all 
imitate the opposition too, but with different learning 
methods from Hoyle 's . A program that ignored the behavior 
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of the opposition might be less susceptible to the influence 
of its trainer, although one could argue that it was not 
particularly intelligent either. Tesauro attributes TD-
gammon's ability to learn to play so well in part to the 
variety of training situations that were forced upon it by the 
non-determinism of the dice during learning; Gelfand found 
e > 0 essential [Tesauro, 1991; Flax et al., 1990]. The 
results described here, in conjunction with theirs, suggest 
that the conclusion about the need for variety in training is a 
function of the learning task, not of the particular learning 
methods used here. 

When learning time was relatively constant, learning 
space was observed (87.5% correlation for achi, 93.75% for 
tic-tac-toe) to increase with the fallibility of the trainer. 
When learning time in fallible training varied widely (in lose 
tic-tac-toe), learning space varied with it. In both cases, this 
is because the heuristics pick up a good deal of data that 
probably does not strengthen play, simply because the 
program was exposed to so many mistakes. A neural net has 
no such difficulty. It would be interesting to see whether 
other methods also have larger long-term memory 
requirements when training against weaker opposition. 

Learning time was dependent on many factors. Hoyle 
simulates an expert game player; it has general heuristics for 
playing all games even before it learns about any specific 
game. This makes its initial level of play higher than, say, a 
neural net that randomized its initial weights. As a result, 
Hoyle could meet the behavioral standard relatively quickly 
in tic-tac-toe and achi. A fallible trainer often introduces 
peculiar situations that the program would fail on, but learn 
not to repeat, with a resultant increase in learning time. The 
more fallible the trainer, the more often this can happen. On 
the other hand, a fallible trainer also makes mistakes that the 
program can exploit. The more fallible the trainer, the more 
often this happens too, so that a highly fallible trainer may 
allow the program to meet the behavioral standard too 
quickly. All these factors visibly interacted, masking any 
correlation. 

Self training offers a natural, gradual progression from 
weaker to stronger. It should therefore prepare the program 
for any opposition as good as itself. Of course, using a 
program as its own trainer deprives it of an important 
knowledge source that people learn from, the expert model. 
Self training is also a substantially slower way to acquire 
broad expertise; TD-gammon spent the first 25% of its 
training playing "long, looping contests that seemed to go 
nowhere" [Tosauro, 1991 ]. 

One solution to the high estimated e values similar to self 
training might be to raise the behavioral standard above 10 
to lengthen the training time. In a game with a small search 
space this should augment Hoyle's useful knowledge and 
improve its performance, but there can be no guarantee of 
perfection. This was demonstrated in single runs withe from 
20 to 60 for lose tic-tac-toe, with the behavioral standard set 
at 100 instead of 10. Leaming time with this higher 
behavioral standard ranged from 297 to 505 contests, instead 
of 10 to 156, and learning space from 336 units to 809, 
instead of 56.8 to 340.8. In every run with the higher 
behavioral standard, despite the fact that Hoyle had seen 
much more of the search space, the program still lost from 
1 % to 2% of its contests and showed no significant change 

in power. It is important to note that those losses were 
only to the novice or the random challenger. A higher 
behavioral standard improved reliability but not power. A 
higher behavioral standard also substantially increased 
learning time and memory requirements. In 505 contests 
averaging 9 states with markers on the board, Hoyle 
encounters 4545 (not necessarily distinct) states out of 5478 
possible distinct states in the entire search space. Even after 
the opportunity to encounter as much as 83% of the entire 
search space, Hoyle is not perfectly reliable. What is required 
is not only more training but broader based training, i.e., 
novel experiences. 

For games without an element of chance, variety in 
training can be introduced with a broad spectrum of 
opposition. As a result of this experiment, we recommend a 
hybrid training experience for any program in a competitive 
domain, one that interleaves sessions against a perfect trainer 
with practice against itself. That is the method Hoyle now 
uses in discovery mode, to develop its own expertise 
without human guidance. When Hoyle trains this way, it 
learns to be perfectly reliable and very powerful against all 
the challengers. 

For more difficult games where no perfect trainer is 
possible, this research offers no reason to believe that self-
training can ever result in perfect play. For such games, 
these results would advocate lesson-and-practice training: 
alternating sets of a few contests against the best player 
available (the lesson) and many contests against the learning 
program itself (the practice). Whether or not a perfect player 
is available, training should be periodically spiced with 
particularly fallible opposition and a random move or two, 
to keep a novice from taking the learner by surprise. Under 
this regimen, once game-learning programs surpass people, 
they can continue to train against each other. To the extent 
that such programs develop different styles of play, 
competition among them should strengthen their abilities. 
In so imperfect an environment, however, there can be little 
guarantee that they will ever play perfectly. A program can 
meet a behavioral standard and still have much to learn. 
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